Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 11(1): 30-49, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34821542

RESUMO

Emerging studies indicate that infusion of HIV-resistant cells could be an effective strategy to achieve a sterilizing or functional cure. We recently reported that glycosylphosphatidylinositol (GPI)-anchored nanobody or a fusion inhibitory peptide can render modified cells resistant to HIV-1 infection. In this study, we comprehensively characterized a panel of newly isolated HIV-1-neutralizing antibodies as GPI-anchored inhibitors. Fusion genes encoding the single-chain variable fragment (scFv) of 3BNC117, N6, PGT126, PGT128, 10E8, or 35O22 were constructed with a self-inactivating lentiviral vector, and they were efficiently expressed in the lipid raft sites of target cell membrane without affecting the expression of HIV-1 receptors (CD4, CCR5 and CXCR4). Significantly, transduced cells exhibited various degrees of resistance to cell-free HIV-1 infection and cell-associated HIV-1 transmission, as well as viral Env-mediated cell-cell fusion, with the cells modified by GPI-10E8 showing the most potent and broad anti-HIV activity. In mechanism, GPI-10E8 also interfered with the processing of viral Env in transduced cells and attenuated the infectivity of progeny viruses. By genetically linking 10E8 with a fusion inhibitor peptide, we subsequently designed a group of eight bifunctional constructs as cell membrane-based inhibitors, designated CMI01∼CMI08, which rendered cells completely resistant to HIV-1, HIV-2, and simian immunodeficiency virus (SIV). In human CD4+ T cells, GPI-10E8 and its bifunctional derivatives blocked both CCR5- and CXCR4-tropic HIV-1 isolates efficiently, and the modified cells displayed robust survival selection under HIV-1 infection. Therefore, our studies provide new strategies for generating HIV-resistant cells, which can be used alone or with other gene therapy approaches.


Assuntos
Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/antagonistas & inibidores , Infecções por HIV/terapia , HIV-1/fisiologia , Fragmentos de Peptídeos/farmacologia , Anticorpos de Cadeia Única/imunologia , Fármacos Anti-HIV/farmacologia , Anticorpos Amplamente Neutralizantes/genética , Anticorpos Amplamente Neutralizantes/imunologia , Linfócitos T CD4-Positivos/virologia , Fusão Celular , Linhagem Celular , Terapia Genética , Glicosilfosfatidilinositóis , Anticorpos Anti-HIV/genética , Proteína gp41 do Envelope de HIV/imunologia , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-2/imunologia , HIV-2/fisiologia , Humanos , Microdomínios da Membrana , Fragmentos de Peptídeos/genética , Receptores de HIV/metabolismo , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Anticorpos de Cadeia Única/genética , Transgenes , Tropismo Viral
2.
Cell Mol Immunol ; 18(3): 660-674, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33462383

RESUMO

The cure or functional cure of the "Berlin patient" and "London patient" indicates that infusion of HIV-resistant cells could be a viable treatment strategy. Very recently, we genetically linked a short-peptide fusion inhibitor with a glycosylphosphatidylinositol (GPI) attachment signal, rendering modified cells fully resistant to HIV infection. In this study, GPI-anchored m36.4, a single-domain antibody (nanobody) targeting the coreceptor-binding site of gp120, was constructed with a lentiviral vector. We verified that m36.4 was efficiently expressed on the plasma membrane of transduced TZM-bl cells and targeted lipid raft sites without affecting the expression of HIV receptors (CD4, CCR5, and CXCR4). Significantly, TZM-bl cells expressing GPI-m36.4 were highly resistant to infection with divergent HIV-1 subtypes and potently blocked HIV-1 envelope-mediated cell-cell fusion and cell-cell viral transmission. Furthermore, we showed that GPI-m36.4-modified human CEMss-CCR5 cells were nonpermissive to both CCR5- and CXCR4-tropic HIV-1 isolates and displayed a strong survival advantage over unmodified cells. It was found that GPI-m36.4 could also impair HIV-1 Env processing and viral infectivity in transduced cells, underlying a multifaceted mechanism of antiviral action. In conclusion, our studies characterize m36.4 as a powerful nanobody that can generate HIV-resistant cells, offering a novel gene therapy approach that can be used alone or in combination.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteínas Ligadas por GPI/imunologia , Terapia Genética/métodos , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/terapia , HIV-1/imunologia , Anticorpos de Domínio Único/farmacologia , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Replicação Viral
3.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462566

RESUMO

Emerging studies demonstrate that the antiviral activity of viral fusion inhibitor peptides can be dramatically improved when being chemically or genetically anchored to the cell membrane, where viral entry occurs. We previously reported that the short-peptide fusion inhibitor 2P23 and its lipid derivative possess highly potent antiviral activities against human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). To develop a sterilizing or functional-cure strategy, here we genetically linked 2P23 and two control peptides (HIV-1 fusion inhibitor C34 and hepatitis B virus [HBV] entry inhibitor 4B10) with a glycosylphosphatidylinositol (GPI) attachment signal. As expected, GPI-anchored inhibitors were efficiently expressed on the plasma membrane of transduced TZM-bl cells and primarily directed to the lipid raft site without interfering with the expression of CD4, CCR5, and CXCR4. GPI-anchored 2P23 (GPI-2P23) completely protected TZM-bl cells from infections of divergent HIV-1, HIV-2, and SIV isolates as well as a panel of enfuvirtide (T20)-resistant mutants. GPI-2P23 also rendered the cells resistant to viral envelope-mediated cell-cell fusion and cell-associated virion-mediated cell-cell transmission. Moreover, GPI-2P23-modified human CD4+ T cells (CEMss-CCR5) fully blocked both R5- and X4-tropic HIV-1 isolates and displayed a robust survival advantage over unmodified cells during HIV-1 infection. In contrast, it was found that GPI-anchored C34 was much less effective in inhibiting HIV-2, SIV, and T20-resistant HIV-1 mutants. Therefore, our studies have demonstrated that genetically anchoring a short-peptide fusion inhibitor to the target cell membrane is a viable strategy for gene therapy of both HIV-1 and HIV-2 infections.IMPORTANCE Antiretroviral therapy with multiple drugs in combination can efficiently suppress HIV replication and dramatically reduce the morbidity and mortality associated with AIDS-related illness; however, antiretroviral therapy cannot eradiate the HIV reservoirs, and lifelong treatment is required, which often results in cumulative toxicities, drug resistance, and a multitude of complications, thus necessitating the development of sterilizing-cure or functional-cure strategies. Here, we report that genetically anchoring the short-peptide fusion inhibitor 2P23 to the cell membrane can fully prevent infections from divergent HIV-1, HIV-2, and SIV isolates as well as a panel of enfuvirtide-resistant mutants. Membrane-bound 2P23 also effectively blocks HIV-1 Env-mediated cell-cell fusion and cell-associated virion-mediated cell-cell transmission, renders CD4+ T cells nonpermissive to infection, and confers a robust survival advantage over unmodified cells. Thus, our studies verify a powerful strategy to generate resistant cells for gene therapy of both the HIV-1 and HIV-2 infections.


Assuntos
Inibidores da Fusão de HIV/farmacologia , Internalização do Vírus/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Membrana Celular/metabolismo , Glicosilfosfatidilinositóis/farmacologia , Células HEK293 , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-2/efeitos dos fármacos , Humanos , Fusão de Membrana/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Peptídeos/farmacologia , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Vírus da Imunodeficiência Símia/efeitos dos fármacos
4.
Zhongguo Zhong Yao Za Zhi ; 43(11): 2365-2371, 2018 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-29945392

RESUMO

Menopausal women appear lipid metabolism disorder with the ovarian function decline and the estrogen levels decreased. Modern clinical usually use estrogen replacement therapy and with long time application with lots of side effect appear. Traditional Chinese medicine has more secure and effective methords,using warming Yang drugs and methods. And the previous study proves the Chinese medicine Astragali Complanati Semen water extraction has a good role in regulation of blood lipids. Because of the liver is the most important organ on regulating metabolism, therefore this study aimed to evaluate the effects of total flavonoids in Astragali Complanati Semen(TFS)on liverlipid level and ERα expressionon liver in hyperlipidemia rats with kidney-Yang deficiency pattern to explore the substance basis and mechanism of Astragali Complanati Semen in regulate lipid effect and clarify traditional Chinese medicine advantages and features. This experiment uses hyperlipidemia rats with kidney-Yang deficiency pattern with bilateral ovariectomized and fed with high fat diet for 6 weeks. And rats of sham operation group and model group rats were intragastrilly(ig) with saline, estrogen group were intragastrilly with estrogen(0.2 mg·kg⁻¹). And three TFS group were intragastrilly with TFS at dose 28.5, 57, 114 mg·kg⁻¹ for 8 weeks. At the same time, TC, TG, LDL-C,HDL-C liver weight, liver index, uterine weight, uterine index, serum estrogen level, FSH levels and liver pathology, liver estrogen receptor expression were detected, weighting and calculating their organ index. The experimental results compared with the model group, TFS 114 mg·kg⁻¹ decreased the level of liver TG (P<0.05), TC (P<0.001) and LDL-C (P<0.001) and increased the level of HDL-C (P<0.05). Compared with the model group, estrogen group increased the level of blood serum (P<0.001) and decreased the level of FSH (P<0.001). In addition, compared with sham operation group,model group decreased the protein expression of ERα(P<0.01). Compared with the model group, estrogen group increased the protein expression of ERα significantly(P<0.001).TFS mid-dose group and TFS high-dose group is increased the protein expression of ERα(P<0.01, P<0.001).In a conclusion,Flavonoids is the main active ingredient of Astragali Complanati Semen. The mechanism of it maybe is enhancing the estrogen receptor sensitivity or the number of estrogen receptors, amplifying the signal after the receptor conduction, which could result in lipid-lowering effect.


Assuntos
Astrágalo/química , Medicamentos de Ervas Chinesas/farmacologia , Receptor alfa de Estrogênio/metabolismo , Flavonoides/farmacologia , Hiperlipidemias/tratamento farmacológico , Lipídeos/análise , Animais , Feminino , Fígado , Ratos , Deficiência da Energia Yang/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...